Chapitre 2 : Logique Booléenne

I. Introduction à la logique booléenne

1. Fonctions booléennes

On appelle booléens les objets qui sont soient "Vrai" (True) soit "Faux" (False). Dans la suite, on notera par $\mathcal{B} = \{Vrai, Faux\}$ l'ensemble des booléens.

Les fonctions booléennes sont des applications dont l'ensemble de départ est de la forme \mathcal{B}^n , et l'ensemble d'arrivée est \mathcal{B} .

C'est à dire que ce sont des fonctions d'une ou plusieurs valeurs booléennes, dont la valeur est toujours soit "vrai" soit "faux".

C'est par exemple le cas de la fonction Ou définie ci-dessous :

$$Ou: \begin{cases} \mathcal{B}^2 \to \mathcal{B} \\ (A,B) \mapsto \begin{cases} Faux \text{ si } (A,B) = (Faux,Faux) \\ Vrai \text{ sinon} \end{cases}$$

Questions:

- 1. Définir de même les fonctions $Et: \mathcal{B}^2 \rightarrow \mathcal{B}$ et $Non: \mathcal{B} \rightarrow \mathcal{B}$.
- 2. On pourrait aussi définir la fonction Et sur \mathcal{B}^3 ou une puissance arbitraire de \mathcal{B} . Quelle en serait la définition?
- 3. Même question pour la fonction Ou.

2. Arbre

Une des façons de produire d'autres fonctions booléennes consiste à imbriquer entre elles les fonctions "Et", "Ou", et "Non" définies précédemment.

Les expressions ainsi obtenues seront représentées par des arbres :

Par exemple, l'arbre ci-dessous représente l'expression "(non A) ou B"

3. Table de vérité

On associe à chaque fonction sa table de vérité, c'est à dire la liste des valeurs qu'elle prend en fonction des arguments (conventionnellement notés "A", "B", etc) qu'on lui donne.

Par exemple, la fonction Ou définie précédemment a la table de vérité ci-dessous :

A	В	Ou(A,B)
False	False	False
False	True	True
True	False	True
True	True	True

Exemple

- Déterminer la table de vérité des expressions $A \Rightarrow B$ et $(NonB) \Rightarrow (NonA)$.
- En déduire que ces deux expressions correspondent à la même fonction.

II. Fonctions python pour afficher des données

1. Affichage de tableaux

La fonction ci-dessous (que l'on ne vous demande pas de comprendre en détail)

permet d'afficher des tableaux (on l'utilisera pour afficher des tables de vérités).

Le tableau à afficher est donné comme une liste de listes de chaînes de caractères correspondant au lignes successives, comme dans l'exemple ci-dessous :

```
tbl=[["Nom", "Prenom"], ["Dalton", "Joe"], ["Dalton", "William"],
     ["Dalton", "Jack"], ["Dalton", "Averell"]]
affiche_tableau(tbl)
```

2. Affichage d'arbres

La fonction ci-dessous (que l'on ne vous demande pas de comprendre en détail)

```
def affiche_arbre(arb,prefix=""):
    print(prefix+str(arb[0]))
    branches, nb_branches=arb[1:],len(arb)-1
    for i in range(nb_branches):
        branche, prf=branches[i], prefix
        for c,d in [("|-","|"),("-"," "),("|-"," ")]:
            prf=str.replace(prf,c,d)
        if i==nb_branches-1: prf=prf+"\[ \]"
        else: prf=prf+" |-"
        prf=prf+"-"*len(str(arb[0]))
        affiche_arbre(branche,prf)
```

permet d'afficher un arbre, qui est donné sous la forme d'une liste de listes, comme dans les exemples ci-dessous :

```
arbre1=["Ou", ["Non", "A"], "B"]
arbre2=["Et",arbre1,["Ou", "A",["Non","B"]]]
affiche_arbre(arbre1)
affiche_arbre(arbre2)
```

On notera que cette fonction prend deux arguments: "arb" (l'arbre que l'on souhaite représenter) et "prefix" (qui est uniquement utilisé dans les appels récursifs de la fonction). Mais si le deuxième argument n'est pas donné, alors python considère par défaut qu'il vaut "" (la chaîne de caractères vide).

3. Code ASCII

La norme ASCII est une façon de stocker du texte sur un ordinateur. Les ordinateurs manipulent des suites de "0" et de "1", qui correspondent habituellement à des nombres (écrits en binaires).

Les textes sont alors manipulés comme des suite de nombres, en ayant choisi une convention qui indique quelle lettre correspond à quel nombre (cette convention s'appelle ASCII).

En python; la fonction chr indique quel caractère est associé à un nombre, alors que la fonction ord indique quel nombre est associé à un caractère (voir exemple ci-dessous):

```
for i in "ABCDEFGH":
    print(ord(i))
```

Exercice

Complétez le code ci-dessous afin de définir une fonction lettre telle que lettre(n) renvoie la $n^{\text{ème}}$ lettre de l'alphabet (écrite en majuscule).

Par exemple lettre(2) doit renvoyer "B"

```
def lettre(n):
   return chr(...)
```

III. Exercices

1. Exemple de fonctions Booléennes

- 1. Fonction "⇔"
 - (a) Écrire la table de vérité de l'expression $A \Leftrightarrow B$.
 - (b) Écrire la table de vérité de (A et B) ou ((Non A) et (Non B))
 - (c) En déduire un arbre associé à la fonction "⇔"
 - (d) Justifiez que les expressions $A \Leftrightarrow B$ et $(NonA) \Leftrightarrow (NonB)$ sont associées à la même fonction.

2. Réécritures

- (a) En utilisant uniquement les fonction "Ou" et Non", écrire un arbre associé à l'expression A Et B.
- (b) En utilisant uniquement les fonction "Et" et Non", écrire un arbre associé à l'expression A Ou B.
- (c) On définit la fonction Ni par Ni(A,B) = Et(Non A, Non B). En utilisant uniquement cette fonction Ni, écrire des arbres pour les expression Non A, A Et B et A Ou B.

2. Négation d'une fonction booléenne

Écrire une fonction qui à partir d'un arbre (auquel on pourrait associer une fonction f), renvoie un arbre associé à la fonction Non f.

Une option est évidemment d'ajouter un "Non" au début de l'arbre sans rien changer au reste de l'arbre, mais on attendra de vous une fonction qui modifie l'arbre plus significativement.

3. Évaluation paresseuse

Il arrive que certains calculs inutiles puissent être évités. Par exemple quand on détermine A Qu B: si A vaut True alors il est inutile de calculer B, on peut directement affirmer que A Ou B vaut True.

En informatique, l'expression évaluation paresseuse désigne le fait d'éviter ainsi des calculs qui ne sont pas nécessaires pour évaluer une expression.

La fonction ci-dessous permettra de savoir ce que Python a calculé (ou n'a pas calculé):

```
def evalue(val,position):
    print("python a évalué le terme "+position+" qui était ",val)
    return val
```

Par exemple, en exécutant le code ci-dessous :

```
evalue(True, "de gauche") or evalue(False, "de droite")
```

on se rend compte que pour calculer True or False python renvoie True après avoir equiv=["Et",["Ou", ["Non","A"], "B"],["Ou", "A",["Non","B"]]] vu le premier terme, sans regarder le terme suivant.

En revanche, en exécutant le code ci-dessous

```
evalue(True, "de gauche") and evalue(False, "de droite")
```

on se rend compte qu'il évalue cette fois ci les deux termes.

- 1. Écrire une fonction implique telle que implique (A,B) revoit True si $A \Rightarrow B$ est vrai et False sinon. On demande d'écrire cette fonction de façon paresseuse.
- 2. De même, définir une fonction equivalent. Peut-elle être paresseuse?
- 3. (a) Définir de même des fonctions et et ou qui prennent comme argument une liste de valeur Booléennes. Par exemple et ([True,False,True]) devra renvover False.
 - (b) En utilisant la fonction evalue constatez que cela ne permet pas d'obtenir une évaluation paresseuse.

(c) À l'aide de la fonction evalue constatez que les fonction any et all calculent elles aussi les fonctions Et et Ou, mais que si l'argument est un générateur au lieu d'une liste, alors l'évaluation est paresseuse.

4. Calcul d'une table de vérité

4.1) Valeur booléenne d'un arbre

Étant donné un arbre "arb" et une liste "1" de booléens, la fonction ci-dessous évalue l'arbre lorsque A=1[0], B=1[1], C=1[2], etc. On notera qu'il utilise les fonction ou et et définies dans l'exercice précédent.

```
def eval arbre(arb.l):
    if arb[0] == "Ou":return ou(
        [eval arbre(branche.1) for branche in arb[1:]])
    elif arb[0] == "Et":return et(
        [eval arbre(branche.1) for branche in arb[1:]])
    elif arb[0] == "Non":return False == eval_arbre(arb[1],1)
   for i in range(len(1)):
        if arb==lettre(i+1): return l[i]
   if arb in [True, False]: return arb
```

par exemple, on définit l'arbre equiv ci-dessous :

Question: Déterminer (avec un papier et crayon) ce que fait ce code quand on exécute eval_arbre(equiv, [True, False]), afin de vous convaincre que cette fonction évalue bien les arbres correctement.

4.2) Liste des cas

Afin de calculer une table de vérité, il faut tout d'abord lister les différentes lignes de la table, c'est à dire déterminer toutes les valeurs possibles pour les variables A, B, C, \ldots

Définissez à cette fin une fonction qui, quand on lui donne le nombre de variables, détermine cette liste des cas à considérer.

liste cas(2) exemple doit produire liste [[False, False], [False, True], [True, False], [True, True]] ces même cas dans un autre ordre)

4.3) Détermination d'une table de vérité

La fonctions "table_verite" définie ci dessous affiche la table de vérité d'une liste de fonctions et d'une liste d'arbres, à condition qu'on lui indique le nombre de variables.

Par exemple, on peut déterminer ci-dessous les tables de vérité des fonctions equivalent et implique (définies précédemment) et des trois arbres :

```
arbre3=["Ou", "A", "B"]
table_verite([equivalent,implique],[arbre1,arbre2,arbre3],2)
```

Question : Déduire que l'arbre arbre1 défini ci-avant correspond à l'expression $A \Rightarrow B$, et que l'arbre arbre2 correspond à l'expression $A \Leftrightarrow B$.

De même, à quelle fonction correspond l'arbre ci-dessous?

En déduire que deux arbres distincts peuvent correspondre à la même fonction.

5. Détermination d'un arbre pour une fonction booléenne arbitraire

Considérons la fonction f dont la table de vérité est donnée ci dessous :

A	В	f
False	False	False
False	True	True
True	False	False
True	True	False

Elle ne prend la valeur True que si A=False et B=True. Elle correspond donc à l'arbre

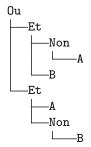
De même, s'il y avait eu deux lignes pour lesquelles f vaut **True**, on aurait trouvé un arbre pour chacune de ces deux lignes, et on les aurait regroupé avec un "Ou", comme pour la table de vérité ci-dessous :

A	В	f
False	False	False
False	True	True
True	False	True
True	True	False

pour laquelle la première ligne True correspond à l'arbre

tandis que la seconde ligne True correspond à l'arbre

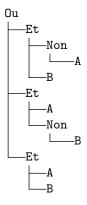
En conséquence la table de vérité indiquée correspond à l'arbre



Dans ce qui suit, on cherche à construire un arbre pour n'importe quelle table de vérité.

- 1. Déterminer à la main (sans l'ordinateur) quel arbre obtiendrait cette méthode pour l'expression "A et (B \Rightarrow C)"
- 2. Écrire un programme qui construit un arbre reproduisant une fonction arbitraire (dont on lui indique le nombre de variables). Vous prendrez prendra garde à écrire un programmes qui fonctionne même quand il y a plus de deux variables (on pourrait avoir trois variables A, B, C comme on pourrait en avoir 5, ou bien une seule).

Par exemple, construire_arbre(ou,2) doit construire l'arbre



Conclusions

L'existence de cet algorithme indique que toute fonction booléenne peut s'exprimer à partir des fonctions "et", "ou" et "non"

- 1. Montrer que "ou" peut se construire à partir de "et" et "non". En déduire que les fonctions "et" et "non" sont suffisantes pour produire toutes les fonctions booléennes.
- 2. De même montrer que les fonctions "ou" et "non" sont suffisantes pour produire toutes les fonctions booléennes.
- 3. Enfin montrer que la fonction "Ni" (définie dans le premier exercice) est suffisante pour produire n'importe quelle fonction booléenne.